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Introduction 

The Taylor experiment on Couette flow between coaxial circular cylinders 

has been the subject of numerous theoretical and experimental studies [ l ] .  

This flow is rich in complex phenomena; so rich, in fact, that they are still 

being discovered [ 2 ] ,  and our understanding of them is far from complete. In 

a typical Taylor experiment, the inner cylinder rotates with a constant 

angular velocity while the outer cylinder, along with the top and bottom 

walls, are kept at rest. The relevant geometric parameters are the radius 

ratio, which is the ratio of the radii of the inner and outer cylinders , and 

the aspect ratio, which is the ratio of the length of the annulus to its 

width. The dynamic parameter is the Reynolds number based on the angular 

velocity of the inner cylinder and the annulus width. The Taylor-Couette flow 

is strongly dependent on all of these parameters. The theory for the infinite 

aspect ratio case (which neglects end wall effects) and its correspondence to 

the experiments in cylinders of necessarily finite but large aspect ratio are 

reviewed in Di Prima and Swinney [ l ]  and Di Prima 131. Benjamin [ 4 1  has 

developed a rigorous qualitative theory for the existence of nonunique steady 

states for confined flows and their stability and transition with particular 

reference to finite-length Taylor-Couette flow. His predictions have been 

confirmed in a series of experiments [5] in cylinders of short length with 

fixed end plates. They have been further confirmed by the numerical results 

of Cliffe and Mullin [ 6 ]  who discretized the steady Navier Stokes equations by 

a Galerkin finite element method and solved the resulting nonlinear algebraic 

equations by the pseudo arclength continuation method of Keller [71. 

Among other numerical studies of the finite-length Taylor-Couette flow 

problem, those of Alziary de Roquefort and Grillaud 181, and Neitzel [9] are 
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worth mentioning. Both investigations were based on the time dependent 
I 

vorticity-stream function formulation along with the equation for the I 

azimuthal velocity. They used a finite difference method to solve for the 

steady state by a time asymptotic approach. Their numerical results show the 

axial structure for small Reynolds number, the smooth development of the flow 

with rapid increase in vortex activity for Reynolds numbers in quasi-critical 

I 

I 
I 
I 
I 

range, and multiple states for sufficiently large Reynolds number. The aspect 
I 

ratio being large, their results are only pertinent to the exchange phenomena 

I beyond the two-cell and four-cell interactions examined by Benjamin. 

No theoretical work on finite-length Taylor-Couette flow has incorporated 

the correct boundary conditions for fixed end walls. An idealized version of 

the end-wall boundary conditions is due to Schaeffer [lo]. He introduces a 

parameter alpha in the boundary conditions, with 0 < a < 1. The parameter 

a interpolates linearly between the two extreme cases: u = 0 corresponds to 

I 
, 

I 
I , 

the infinite length problem which accommodates the Couette flow as an exact 

solution, while u = 1 corresponds to the finite length problem with the 

correct no-slip conditions being applied on the end walls. 

For a = 0 , Blennerhasset and Hall [ll] have considered the linear 

stability problem in the small gap limit, and the key result was that the two- 

cell primary flow changes into four-cell at the aspect ratio of approximately 

2.6. This should be compared with a value of roughly 3.7 observed by Benjamin 

for radius ratio of 0.615. Hall [12] has further derived the amplitude 

equations for this problem. An interesting feature of these amplitude 

equations is a quadratic term (absent in the infinite aspect ratio case) which 

can introduce hysteresis and soften bifurcations into smooth transitions. 
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For small nonzero values of u , Schaeffer [lo] used a Lyapunov-Schmidt 

reduction procedure and the methods of singularity theory to obtain results 

applicable to the exchange processes between 2m and 2m+2 cells, m > 2. Hall 

[ 121 has studied the two cell-four cell exchange problem using amplitude 

equations and a perturbation method for small values of alpha. 

The purpose of our continuing research effort is to solve the unsteady 

Navier-Stokes equations by a highly accurate spectral collocation method with 

a view to elucidate the underlying processes leading to laminar-turbulent 

transition in the Taylor-Couette flow. The present work is confined to the 

evolution of two-cell and single-cell Taylor-Couette flows with specific 

reference to the experiments of Benjamin and Mullin [131, Lucke, et al. [141 

and Aitta, et a1 [151. The main result of these studies is a second order 

transition from a two-cell flow, symmetric under reflection about the mid- 

plane, to an asymmetric single-cell flow that ensues with increasing Reynolds 

number beyond a certain critical value. 

Splitting Scheme 

The incompressible Navier-Stokes equations for axisymmetric flow in a 

cylindrical geometry are, in conservation form: 

av a(uv) a(W) 2Uv 2 v  - +- + -+ -=  v[V v - -  ] 
at ar aY r r 
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2 - i a  a a L  
a Y  

where V = E ( r  =) + 

and u, v ,  w a r e  the  r ,  8 and y components of v e l o c i t y ,  r e spec t ive ly .  For t h e  

case where t h e  ou te r  cy l inde r  and end plates  are s t a t i o n a r y ,  and t h e  inne r  

cy l inde r  rotates, the  boundary condi t ions  are: 

1 
I 

I 
u = v = w = 0 on the  o u t e r  cy l inde r  r = Ro, 

and a t  t h e  top  and bottom w a l l  

l 

y = f yQ I 

Ri 
u = w = 0 on the  inne r  cy l inde r  r = 

v = QRi. 
I 

In the  present  c a l c u l a t i o n s ,  t he  azimuthal v e l o c i t y  v is s p l i t  i n t o  two 

N 

parts ,  v = v + v,  where v satisfies:  b b 

2 v v  = o  b 

* YQ v = O a t r = R  a n d a t y =  b 0' 

i = QR. a t  r = R 
1 

The quant i ty  v is computed and s t o r e d  a t  the  s t a r t  of a c a l c u l a t i o n ,  

which proceeds with t h e  computation of u ,  v ,  and w a t  each t i m e  s tep .  Note 

t h a t  t hese  three  v e l o c i t y  components s a t i s f y  homogeneous boundary condi t ions .  

b 
N 

A s p l i t t i n g  method i s  employed t o  advance t h e  s o l u t i o n  from 

tn t o  t"". Writing the  Navier-Stokes equat ions  i n  vec to r  n o t a t i o n  wi th  2 
N 

represent ing  the  v e l o c i t y ,  (u ,  v ,  w ) ,  w e  have: 
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2 u + FEU = -VP + vV - u i n  D ,  t he  annulus -t 

v*u - = 0 

u = 0 on t h e  boundary r - 

(5) 

* n t h e  s p l i t  scheme f i r s t  advances - u t o  an  in te rmedia te  s o l u t i o n  - u by 

s o l  v i  ng : 

* * *  2 *  
u + u *vu = vv - u - t  - -  

* * u= g on r. 

* * The in t e rmed ia t e  boundary condi t ion = g w i l l  be d iscussed  

* n+ 1 subsequently.  F i n a l l y ,  t h e  s o l u t i o n  is advanced from - u t o  - u v i a :  

A 

n * "  *+l = o on r 

A 

where n i s  un i t  normal t o  t h e  boundary r . Note t h a t  the  f i n a l ,  "pressure 

co r rec t ion"  s t e p  by i t s e l f  i s  an inv i sc id  c a l c u l a t i o n ,  and is  well-posed when 

only boundary condi t ions  on t h e  normal component of v e l o c i t y  are enforced. A t  

t h e  end of the  f u l l  s t e p  the re  e x i s t s  a non-zero t a n g e n t i a l  component of 

v e l o c i t y  on the  boundary. The magnitude of t h i s  s l i p  v e l o c i t y  can be reduced 
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I 

* 
by a proper choice of t h e  in te rmedia te  boundary cond i t ion  on - u . Marcus [ 1 6 ]  

has  descr ibed t h e  d i f f i c u l t i e s  which ar ise  from t h e  use of - u = 0 as t h e  

in te rmedia te  boundary condi t ion .  The condi t ions  used here are based on t h e  

work of For t in ,  e t  a l .  [ 1 7 ] .  Using backward Euler  t i m e  d i s c r e t i z a t i o n  f o r  

Eq. 7 y ie lds :  

* 

n+l * = u - A t  VP U 

and t h e  s l i p  v e l o c i t y  on the  boundary is  given by 

0 A 

n+l = O(At) I f  T u = 0 on t h e  boundary, t hen  T - u 
* 

lr - 
A n+ 1 where T is  t h e  u n i t  tangent  t o  the  boundary r. However, i f  VP 

i s  expanded i n  Taylor series about t = t": 

vpn+l = vpn + A t  VP: + O(At2> 

and the  second term is approximated by 

then Eq. 8 becomes 

I 
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3 Thus the slip velocity may be reduced to O(At ) through the intermediate 

boundary condition 

A * 
T - u l r  = At (2VPn - VPn-l). 

A * 
Of course the boundary condition n u = 0 is retained. - 

The pressure step is actually carried out in two parts. First, the 

divergence of the first of Eqs. 8 yields: 

2 n+l - 1 * v P - - v-u At - 

where V u n+l = 0 is enforced. Then the velocities are updated using - 

t 

Note that this formulation requires a boundary condition for the 

pressure. This poses a problem, since there is no natural boundary condition 

for pressure. Deriving a condition by enforcing the normal momentum equation 

at the boundary is a questionable practice, as the equation need not hold on 

the boundary at the differential level of the equations. This inconsistency 

often produces explosive instability in a spectral code. Fortunately, the 

split scheme yields a self-consistent pressure condition, 

A 

n V P ~ ~  = o 

* 
since both A u and n̂ un+' are zero on the boundary. The error involved - - 
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in this specification is, we believe, related to the overall splitting error 

of the scheme. 

Zang and Hussaini [18], have extensively investigated a related split 

scheme in which two coordinate directions were periodic and the third employed 

general boundary conditions. Comparison between split and unsplit codes using 

the same discretization yielded agreement to five decimal digits. However, 

they utilized a staggered grid for pressure in the non-periodic direction, 

obviating the need for a pressure boundary condition. Staggered grids in two 

dimensions either lack the ability to set both velocity components equal to 

zero on all boundaries, or are susceptible to an oscillatory "checkerboard" 

pressure mode. The unstaggered scheme used here, on the other hand, requires 

a pressure boundary condition. Actually, the consistent pressure equation 

derived by Zang and Hussaini yields exactly the same condition on pressure as 

used here. No instabilities were ever encountered with the present scheme. 

Discretization and Solution Scheme 

Since no-slip boundary conditions are enforced in both the r and y 

directions, Chebyshev spectral representation is appropriate in both 

directions. Collocation is used for a number of reasons: straightforward 

treatment of nonlinear terms and boundary conditions; capability to include 

coordinate stretchings; and ability to solve the resulting discrete equations 

rapidly. For further discussion of this form of discretization, see Hussaini 

et al. [ll]. 

A coordinate stretching was employed in the radial direction to resolve 

the large gradients near the inner cylinder. The form of the stretching is: 
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[1 + b exp (-a)] (Ro - Ri) 
r =  r + Ri (14)  [ l  + b exp (-a r ) ]  C C 

where rc is the radial coordinate i n  the computational space. 

and b = 5 to 50 were typical in this work. 

Values of a = 2 

The y-direction was not stretched. 

Time discretization of the first step in the split scheme involved the 

low-storage mixed Runge-Kutta/Crank-Nicholson scheme [20] .  Writing the semi- 

discrete equation for the first step as 

(15)  ut = A(u) + D(u) 

where A(u) and D(u) represent advection and diffusion terms, respectively, the 

mixed scheme advances from time step tn to tn+' using a third-order Runge- 

Kutta scheme for the advection terms and Crank-Nicholson for the diffusion 

terms : 

uo = u(P> 

H1 = At A(uo) 

u1 = uo + -  1 1  H + At (D(uo) + D (u 1 ) )  3 7 

1 H2 = At A(u ) - €I1 

1 1 5 2  5 1 2 u2 = u + - H + -At (D(u ) + D (u ) )  16 24 

H3 = At A(u 2 ) - - 153 H2 
128 

3 2 8 3 1  2 3 u = U  + - - + - A t  (D(u )+D(u )) 15 8 
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n+ 1 3 u(t ) = u  

The second step of the split scheme uses backward Euler time 

discretization, as mentioned in the previous section. 

The above scheme is stable to O ( 1 )  Courant numbers, which involves time 

steps many times larger than that desired for accuracy. Typically a time step 

which resulted in Courant numbers of .1 to .2 based on the smallest physical 

mesh spacing was used. The slip velocity resulting from the choice of time 

step was normally eight to ten orders of magnitude below the maximum velocity 

in a given direction. 

Note that the above scheme reduces the problem to a sequence of uncoupled 

Helmholtz/Poisson equations to advance the discrete solution. Since one time 

step requires the solution of nine positive-definite Helmholtz equations with 

Dirichlet boundary conditions, and one Poisson equation with pure Neumann 

boundary conditions, a computationally efficient technique had to be developed 

if this study is to be feasible. The present scheme is fairly efficient. 

This scheme involves preconditioned Richardson iteration, in which an optimum 

relaxation parameter is chosen dynamically using a principle of either 

minimum-residual (MR) or orthogonal-residual (OR) procedure. Details of this 

technique are as follows. 

Write the equation to be solved as 

L(u) = f 

The residual at a given iterate "m" is 

Rm 3 L(um) - f 
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A preconditioned iteration scheme may be looked at in the following 

way. At a given iteration, the goal is to compute an update such that the 

next residual is zero, i.e. I 

or for a linear operator L (as in this case): 

I 
I Approximating the operator L which is difficult to invert by a more easily- 

I inverted operator M yields the following preconditioned scheme for the update: 
i 

I 

(21) -1 m 
I 

A< = d1[L(um)l = M [ R  1 

A well-known method for computing 

norm of the 

I 

I 
I for which a 

This is the 

residual, Rmt.' : 

~"'~1 = min ( R ~ ,  R ~ )  m 
w 

2 m 
+ o  

stationary point is 

= - 

usual minimum residual 

m an optimal w involves minimizing the L2 

< 

(MR) method. 
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is to require that the successive An alternate method for chosing w 

residuals be orthogonal to each other. This yields an orthogonal residual (OR) 

scheme related to the method of steepest descent: 

m 

and hence 

The scheme proceeds as follows from an initial guess uo and residual 

Ro = L(uo) - f: 

-1 A; = M [Rm] 

m = u + om A: m+l u 

m R"+~ = R" - w L(AG) 

etc. 

The preconditioning operator M is the second-order finite-difference 

operator which corresponds to the spectral operator L. Unequal-mesh spacing 

formulae, based on the physical-space point locations (which includes the 

radial stretching), are used in constructing M. A fixed V-cycle multigrid 

scheme driven by approximate-factorization is used to invert the 

preconditioning operator (Eq 21). It was found that complete convergence of 
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this step is not required for the overall preconditioned scheme to converge: 

essentially no difference in convergence rate is seen between fully solving 

the preconditioning step and merely reducing the residual (associated with 

inversion of the preconditioner) by two orders of magnitude which usually 

requires only two or three multigrid cycles. 

The overall convergence rate based on spectral operator evaluations is 

never slower than -35 (for Dirichlet boundary conditions); rates between .15 

and .2 are typical even on the highly stretched mesh. The use of MR or OR to 

compute the optimum relaxation factor yields equivalent convergence rates, 

although the OR scheme is found to be more robust in other contexts. 

However, the observed convergence rate deteriorates for this scheme when 

it is applied to the pure Neumann problem encountered in the E q s  (11) and 

(13). Since a large number of such problems are to be solved, a boundary 

influence-matrix technique is devised that reduces the computation time 

associated with this step. To compute the solution of 

L(u) = f in D 

u = O o n r  n 

a series of homogeneous solutions U (i) is obtained: 
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f o r  each boundary poin t  xi. For each s o l u t i o n  u ' ~ ) ,  , t he  vec to r  of normal 

g r a d i e n t s  [uLi)] a t  a l l  boundary po in t s  i s  computed. These v e c t o r s  are 

c o l l e c t e d  as columns of a ( square)  matrix.  This  mat r ix  i s  the  in f luence  of a 

u n i t  d i s turbance  a t  the  boundary on the  normal g rad ien t  a t  t he  boundary of t h e  

s o l u t i o n  t o  t h e  l i n e a r  ope ra to r  L(u) = 0. Denote t h i s  mat r ix  by 

where a t o t a l  of Nb p o i n t s  l i e  on t h e  boundary. The mat r ix  C may be inve r t ed  

t o  y i e l d  the in f luence  of a u n i t  normal g rad ien t  a t  t h e  boundary on t h e  

boundary value of a s o l u t i o n  of L(u) = 0 , with  p rov i s ion  f o r  s e t t i n g  t h e  

l e v e l  of the s o l u t i o n  required.  Then the  s o l u t i o n  of t he  o r i g i n a l  problem 

(Eq. 27)  proceeds by so lv ing  t h e  r e l a t e d  problem wi th  homogeneous D i r i c h l e t  

boundary condi t ions:  

h L(u ) = f i n  D 

h u = O  o n r  

h 
n The vec to r  of normal d e r i v a t i v e s  of uh a t  t h e  boundary [u ] i s  computed. 

uh must be co r rec t ed  i f  i t  i s  t o  s a t i s f y  t h e  d e s i r e d  Neumann boundary 

cond i t ions .  This  c o r r e c t i o n  is computed by applying t h e  in f luence  mat r ix  t o  

t h e  boundary g rad ien t  e r r o r  vec tor :  
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~(u') = o in D 

u C = c  -1 [u:] on r 

i 

I 

The desired solution is u = uh + uc. 

Computation and inversion of the influence matrix is done in a 

preprocessing step; since it is a function only of the mesh geometry, it may 

be stored and used whenever it is needed. To obtain a solution of the pure 

Neumann-Poisson problem at each time step requires that we solve just two 

Dirichlet-Poisson problems and the solutions satisfy the desired boundary 

conditions exactly. 

Implementation and Performance: 

The above split scheme for solving the time-dependent incompressible 

Navier-Stokes equations has been inplemented with a view to processing on both 

scalar and vector computers. In scalar form on a CYBER-175, the code requires 

approximately 20 seconds per time step on a 17 x 17 mesh, and 56 seconds/step 

on a 25 x 25 mesh. A large fraction of these times is spent in computing the 

11 Helmholtz/Poisson solutions required in each time step. On the VPS-32 

vector processing machine at NASA Langley, the vector code requires about 14 

seconds step on a mesh comprised of 65 points in the y direction and 33 points 

in the r direction. Almost 85 percent of this time is taken in inverting the 

preconditioning step of the Helmholtz/Poisson solution as the approximate 

factorization part of the step is not vectorizable in a manner which yields 

adequate vector lengths for the two-dimensional problems. This observed 

performance for the two-dimensional Chebyshev-Chebyshev code is in line with 
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the performance quoted in (21) for a three-dimensional Chebyshev-Fourier- 

Fourier code (both codes have similar operation counts). For a coordinate 

direction discretized with Chebyshev series using N points, the operation 

count for that direction is O(N2), whereas a Fourier-discretized direction 

requires only O ( N )  operations. Thus, the present Chebyshev-Chebyshev method 

and the Chebyshev-Fourier-Fourier method both have total operation counts of 

O ( N 4 ) ,  with the latter method having the advantage of larger possible vector 

lengths. 

When the azimuthal direction is added to this simulation, however, the 

relative performance improves dramatically. Since the azimuthal direction is 

periodic, Fourier series is an appropriate discretization. The computations 

are performed in the Fourier wave-space of that direction; the discrete 

equations for each azimuthal mode decouple (see [ 21 ]  for details)), allowing 

vector lengths to increase by a factor of the number of points in the 

azimuthal direction. This increase in vector length improves the CPU 

seconds/point/time step performance of the present scheme by a factor of four, 

and should allow the planned three-dimensional simulations to be performed. 

RESULTS 

The results presented here pertain to the axisymmetric two-cell/one-cell 

bifurcation, which occurs when the Taylor apparatus has an aspect ratio up to 

about 1.5. The form of the bifurcation depends sensitively on this parameter; 

experiments [15]  show that this transition can change from supercritical to 

subcritical with variations in the aspect ratio of as little as eight percent. 
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Most of the results are obtained either by making quasi-static changes in 

the Reynolds number and allowing the stable, dominant mode to settle, or by 

slowly sweeping through a Reynolds number range, monitoring the change in a 

particular mode. Of course, using a time-accurate code to simulate the 

bifurcations of steady-state solutions is quite inefficient, owing to the 

extremely small growth rates near the bifurcation points. However, the 

eventual aim of this work is to simulate the turbulence and broadband 

structure exhibited by Taylor-Couette flow at moderate Reynolds numbers and 

the code was developed with these time dependent flows in mind. The ability 

to simulate accurately the sensitive, steady state bifurcations at lower 

Reynolds numbers is an excellent test for the numerical method. 

Moreover, by using a time-dependent computation to investigate the steady 

state bifurcations, we can obtain information on the path which the system 

follows as states exchange stability. This is illustrated by the following 

result. A 17 x 17 grid is used in all these simulations with a few 

calculations on a 25 x 25 mesh for accuracy check. The time step in these 

simulations corresponds to a maximum Courant number of about 0.2; the time 

step is limited by accuracy, and not by stability. For the geometry of 

Benjamin and Mullin [13]  with a radius ratio .615, and aspect ratio 1.05, the 

symmetric two-cell mode is allowed to stabilize at a relatively low Reynolds 

number (R = 62). The Reynolds number is then raised impulsively to 165, above 

the experimental bifurcation boundary of about 150 and the growth of the one- 

cell asymmetric mode is observed. Random machine roundoff error on the order 

of 1 0 - l ~  The order parameter used 

here to quantify the asymmetry of the mode is due to Lucke et al. [14]: 

provides the initial energy for the mode. 
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drdz (u(r,z) - u(r,-z)) ' = {drdz ((u(r,z)I + lu(r,-z)l) 

The integrals were performed by spectral 

this parameter is shown in Fig. 1 plotted 

diffusion time scale yah. A s  can be seen, 2 

collocation. The logarithm of 

against time in units of the 

the initial instability leading 

to the one-cell mode appears to be linear; that is, exponential growth with 

time is observed with only the later stages being modulated by nonlinear 

effects. Also shown in Fig. 1 is a plot of the logarithm of the disturbance 

energy versus time. After an initial period, the disturbance energy grows at 

a rate which is within 2% of double the growth rate of J, as expected. 

Streamlines in a cross-sectional plane at various stages in the two- 

celllone-cell exchange are shown in Fig. 2. Locations of these intermediate 

states on the J, vs time curve are indicated in Fig. 1. Note that the 

progression between states is smooth without abrupt collapse or alteration of 

the flowfield structure. 

The geometry of Lucke, et al. [ 1 4 ]  has a radius ratio of .5066, and an 

aspect ratio of 1.05. This choice of parameters leads to a smooth 

supercritical bifurcation to the one-cell mode as the Reynolds number is 

increased beyond a critical value. A plot of the order parameter against 

Reynolds number for this simulation is shown in Fig. 3. This curve is traced 

in the direction of both increasing and decreasing Reynolds number. A s  we 

approach the initial critical value, the Reynolds number is varied very slowly 

at a rate of about f .2 units based on the diffusion time scale. The growth 

rates are much larger on the upper branch of this plot, which permits larger 

changes in Reynolds number. This bifurcation diagram is validated by 

1 
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restarting the simulation at various points along the curve and allowing the 

flow to settle to eight decimal digits for a fixed Reynolds number. 

Also shown in Fig. 3 are the results of Lucke et al. [14] for this 

case. Their results were computed using a staggered-grid finite-difference 

scheme on a grid of about 28 x 30 points; however, in that calculation the 

Reynolds number was changed at a rate of about 4.1 based on the present time 

scale. A large discrepancy in the critical Reynolds number as predicted by 

these two studies is noted. 

We also investigated the geometry of Aitta, et al. [15] where the radius 

ratio is .5. Their experimental results relate to three aspect ratios: 

1.129, 1.266, and 1.281; for which the two-cell/one-cell bifurcations are 

supercritical, transcritical, and subcritical, respectively. In Fig. 4, an 

order parameter due to Aitta et al. [15] is plotted as a function of Reynolds 

number. 

where r = Ri + .14(Ro - Ri). Also shown in Fig. 4, are the experimental 

results of Aitta, et al. The two loci of states agree in form. They also 

agree as to the level at which the asymmetric branch becomes unstable and the 

width of the region in which both symmetric and asymmetric modes are stable. 

The critical Reynolds number from the simulation is within 3% of that of the 

experiment. The growth rates of the one-cell mode in the "hysteresis" region 

of the bifurcation are exceedingly small, several orders of magnitude below 
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those  observed i n  t h e  f i r s t  two cases, producing a flow c o s t l y  t o  s imula t e  

accu ra t e ly .  Resolut ion requirements  are a l s o  l a r g e ;  a 33 x 33 mesh is 1 

r equ i r ed  for  t h i s  s imula t ion .  



I 
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